Venomous animals have a long history as a source of medical treatments (1). Snake venom, for example, has been used in Ayurvedic medicine since the 7th century BCE to prolong life and treat arthritis and gastrointestinal ailments. Tarantulas are used by indigenous populations of Central and South America to treat ailments ranging from asthma to cancer, while cobra venom has been used since the 1930s to treat conditions as diverse as asthma, polio, multiple sclerosis, rheumatism and pain (2). However, the modern era of venoms-based drug discovery did not begin until the 1970s with the development of the blockbuster antihypertensive drug captopril, based on a peptide from the venom of the Brazilian viper Bothrops jararaca (3). Today, many of the major pharmaceutical companies (and most major agrochemical companies) have venoms-based drug discovery programs or use venom-derived molecules for target validation (e.g., AstraZeneca, Eli Lilly, Johnson & Johnson and Merck). Moreover, there are now several companies with a focus on venom-derived therapeutics, including Airmid, ReceptoPharm (a subsidiary of Nutra Pharma), Theralpha, VenomeTech, Venomics (a subsidiary of QRxPharma) and Xenome. In this article, I outline recent developments in the venoms-based drug discovery field that might lead to new venom-derived peptide therapeutics.

Introduction

An extraordinarily diverse range of animals, including arachnids, centipedes, cone sailes, reptiles, squid, and wasps, have evolved venoms for the purpose of predation (4). Since the prey–predator relationship applies a constant selection pressure on toxin efficacy, venom toxins typically have extremely high specificity and potency for their molecular target, owing to long periods of evolutionary fine tuning (>400 million years in the case of scorpions, polio, multiple sclerosis, rheumatism and pain). However, the modern era of venoms-based drug discovery did not begin until the 1970s with the development of the blockbuster antihypertensive drug captopril, based on a peptide from the venom of the Brazilian viper Bothrops jararaca (3). Today, many of the major pharmaceutical companies (and most major agrochemical companies) have venoms-based drug discovery programs or use venom-derived molecules for target validation (e.g., AstraZeneca, Eli Lilly, Johnson & Johnson and Merck). Moreover, there are now several companies with a focus on venom-derived therapeutics, including Airmid, ReceptoPharm (a subsidiary of Nutra Pharma), Theralpha, VenomeTech, Venomics (a subsidiary of QRxPharma) and Xenome. In this article, I outline recent developments in the venoms-based drug discovery field that might lead to new venom-derived peptide therapeutics.

Venoms to Drugs: Translating Venom Peptides into Therapeutics

Glenn King

Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072

*Corresponding author: glenn.king@imb.uq.edu.au

The Current Landscape of Venom-derived Drugs

There are currently six FDA-approved drugs derived from venom peptides or proteins, with a further ten in clinical trials and many more in various stages of preclinical development (1). The majority of approved venom-derived drugs are derived from snakes or lizards and they mostly target the cardiovascular system. This implies that optimal success in venoms-based drug discovery might be achieved by narrowly focusing on cardiovascular modulators from reptiles. However, this scenario is the result of two historical factors that are no longer relevant. First, most early toxicological studies focussed on snakes as they typically provide much larger quantities of venom than other venomous animals (typically milliliters of venom per milking compared to less than 10 μL from centipedes, scorpions and spiders). The development over the past decade of high-throughput methods for screening venoms and characterising the active components (14) has opened up the field of venoms-based drug discovery to small venomous invertebrates, which constitute the vast majority of venomous species. Second, our understanding of the cardiovascular system preceded our still rudimentary understanding of the nervous system, which houses most of the molecular targets of invertebrate venoms. Exciting neuronal drug targets such as acid-sensing ion channels (ASICs), transient receptor potential (TRP) channels, various subtypes of voltage-gated channels, and numerous G protein-coupled receptors (GPCRs) had not even been discovered in the 1970s and 1980s. It is only now that our understanding of the molecular architecture of the nervous system has become more advanced that venom peptides from invertebrates are beginning to provide therapeutic leads for non-cardiovascular targets. A good example is the introduction in 2004 of Prialt®, a voltage-gated calcium

Vol 44 No 3 December 2013 AUSTRALIAN BIOCHEMIST Page 13
channel blocker used for the treatment of intractable chronic pain (15). Prialt®, a 25-residue peptide stabilised by three disulfide bridges, is identical to the native peptide found in the venom of a fish-hunting marine cone snail.

Current Developments

Route of Administration of Venom-peptide Drugs

In line with an increasing industry focus on peptide drugs (1), the two most recently approved venom-derived therapeutics (Prialt® and Byetta®), as well as most venom molecules currently under development, are peptides (11–71 residues). Most are stabilised by 2-5 disulfide bonds (Table 1). The use of protease-resistant disulfide-rich venom peptides that can be produced by recombinant methods obviates many of the historical shortcomings of peptide drugs, such as poor stability, low solubility and high cost of manufacturing. However, since it is assumed that most venom peptides will not be orally active, these drugs are generally being developed as injectable therapies.

For life-threatening situations, perioperative use, and chronic conditions such as diabetes and multiple sclerosis, parenteral administration is unlikely to be a major limitation in terms of patient acceptance and market penetration. However, the frequency of injection is likely to be an important factor, and consequently there is much interest in developing methods of prolonging venom-peptide half-life in order to reduce administration frequency. There has been good progress in this area as evidenced by recent developments with exenatide, the latest venom-derived drug to be approved by the FDA. Exenatide is an insulin secretagogue (GLP-1 receptor agonist) used to treat type 2 diabetes (16). It is a synthetic version of the 39-residue exendin-4 peptide isolated from the saliva of the Gila monster, a venomous lizard. Exenatide is a linear peptide with a relatively short in vivo half life and consequently the original formulation of this drug (Byetta®) required twice daily subcutaneous injections. Despite this limitation, Byetta® achieved worldwide sales of USD $800 million in fiscal 2009 (1). Eli Lilly, Amylin Pharmaceuticals and Alkermes subsequently developed a formulation in which the peptide is embedded in biodegradable polymeric microspheres, leading to an extended duration of exenatide release that enables therapeutic levels to be maintained with once-weekly injections (17). This new formulation (Bydureon®) was recently approved by the FDA and it has been forecast that worldwide sales will peak at USD $2.5 billion despite the introduction of competing incretin mimetics (1). This seminal work on extending the half-life of exenatide has provided both renewed impetus and a proven approach for extending the duration of action of other venom-peptide drugs.

The much smaller size of venom-peptides (typically <5 kDa) compared with larger antibody-based biologics also opens up the possibility of using non-traditional routes of administration such as buccal, nasal, pulmonary and transdermal (18). Theralpha, for example, are currently testing sublingual delivery of prohanin, an 11-residue analgesic peptide from the venom of the King cobra, while buccal and intranasal delivery are being examined for administration of the sea anemone peptide ShK (discussed in more detail below) (19). What remains to be tested in any detail is whether the small size of venom peptides and their Table 1. Examples of disulfide-rich venom peptides currently in clinical or preclinical development.

<table>
<thead>
<tr>
<th>Animal</th>
<th>Peptide</th>
<th>Size</th>
<th>SS bonds</th>
<th>Target</th>
<th>Phase</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone snail</td>
<td>Xen2714</td>
<td>13</td>
<td>2</td>
<td>Noradrenaline transporter</td>
<td>Phase IIb</td>
<td>Chronic pain</td>
</tr>
<tr>
<td></td>
<td>Vc1.1</td>
<td>16</td>
<td>2</td>
<td>GABA<sub>1</sub>/nAChR</td>
<td>Phase Ila</td>
<td>Chronic pain</td>
</tr>
<tr>
<td></td>
<td>η-CVID</td>
<td>26</td>
<td>3</td>
<td>Ca<sub>V</sub>2.2</td>
<td>Phase IIb</td>
<td>Chronic pain</td>
</tr>
<tr>
<td>Sea anemone</td>
<td>ShK-186</td>
<td>35</td>
<td>3</td>
<td>Kv1.3</td>
<td>Phase Ia</td>
<td>Autoimmune diseases</td>
</tr>
<tr>
<td>Spiders</td>
<td>PcTx1</td>
<td>40</td>
<td>3</td>
<td>ASIC1a</td>
<td>Preclinical</td>
<td>Pain/stroke</td>
</tr>
<tr>
<td>Centipede</td>
<td>Ssm6a</td>
<td>46</td>
<td>3</td>
<td>Na<sub>V</sub>1.7</td>
<td>Preclinical</td>
<td>Chronic pain</td>
</tr>
</tbody>
</table>
First-in-class Drugs Derived from Venoms

One of the most exciting developments in the field in recent years has been the emergence of new, potential first-in-class drugs derived from animal venoms, best exemplified by the development of the sea anemone venom-peptide ShK for treatment of multiple sclerosis (MS) and other autoimmune diseases. In humans, expression of the voltage-gated potassium channel Kv1.3 increases ~5-fold when quiescent effector memory T (TEm) cells terminally differentiate to TEM-effector cells in autoimmune diseases such as MS and rheumatoid arthritis (21). In contrast, Kv1.3 expression is virtually unchanged during activation of naïve and long-lived central memory (TEm) T cells. Thus, selective blockade of Kv1.3 provides a mechanism for treating T cell-mediated autoimmune diseases without inducing generalised immunosuppression (22,23). Unfortunately, although many natural and synthetic compounds have been isolated that potentyl inhibit Kv1.3, most are not sufficiently selective to be useful therapeutics. In contrast, ShK-186, an ShK analogue with extremely high potency and selectivity for Kv1.3 (21,24), recently completed a successful Phase 1a clinical trial for treatment of MS. Thus, ShK-186 might become the first-in-class Kv1.3 blocker for treatment of MS and other autoimmune diseases.

Another target for which venom peptides might provide first-in-class drugs is the voltage-gated sodium channel NaV1.7, a key player in the human pain signalling pathway. Humans with inheritable loss-of-function mutations in NaV1.7 are indifferent to all types of pain, with no other sensory impairments except anosmia (25). Thus, drugs that block NaV1.7 should be powerful analgesics for treating many chronic pain conditions. Despite intense interest within large pharma, development of NaV1.7-based analgesics has proved difficult as it is essential to avoid off-target effects on closely related NaV channels with critical physiological roles. In particular, it is essential to avoid effects on NaV1.5, which is responsible for the rising phase of the cardiac action potential, the muscle-specific NaV1.4, and NaV1.6, the primary NaV channel at nodes of Ranvier. Small-molecule NaV1.7 blockers tend to bind in the highly-conserved pore region of the channel, making it difficult to achieve subtype selectivity. In contrast, spider-venom peptides bind to the less well-conserved voltage sensor domains of the channel, providing an opportunity to obtain selective inhibition of NaV1.7 (6). Merck have described a number of spider-venom peptides that potently inhibit NaV1.7 but not with sufficient selectivity to be therapeutically useful (26). However, we recently described a centipede-venom peptide (Ssm6a) that not only potently inhibits human NaV1.7 but crucially has more than 150-fold selectivity for NaV1.7 over all other human NaV subtypes with the exception of NaV1.2, for which the selectivity is 32-fold (27). Ssm6a proved to be more analgesic than morphine in rodent models of pain and it appears to have a very high therapeutic index (27).

Future Prospects

Key technical advances combined with a renewed industry-wide focus on biologics have converged to provide a larger-than-ever pipeline of venom-derived peptide therapeutics. Disulfide-rich venom peptides obviate some of the potential disadvantages of therapeutic peptides and in contrast with larger biologics, they are unlikely to be immunogenic. Moreover, there is growing appreciation that oral administration might be a viable option for some venom peptides (20), significantly enhancing the likelihood of them achieving blockbuster status. The fact that some venom peptides appear capable of breaching the blood brain barrier (28) and translocating across cell membranes (29) also opens up the possibility of exploiting targets that have not previously been accessible to peptide drugs.

Despite recent progress, only a tiny fraction of the chemical diversity encoded in animal venoms has been explored. Fortunately, a much wider range of animal venoms can now be studied in detail due to recent advances in analytical techniques as well as the ability to extract peptide sequences directly from venom-gland transcriptomes (14,30). These technical advances, along with the introduction of high-throughput screening platforms (14), should greatly expedite future venom-based drug discovery efforts and help to expand the growing pipeline of venom-derived drugs.

References

References continued on page 8
References continued from page 15

